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Abstract14

During an infectious disease outbreak, policymakers must balance medical costs15

with social and economic burdens, seeking interventions that minimize both. To16

support this decision-making process, we developed a framework that integrates17

multi-objective optimization, cost–benefit analysis, and an interactive dashboard.18

This platform enables users to input cost parameters and immediately obtain a19

cost-optimal intervention strategy. As an example, we applied the framework to20

the early outbreak of COVID-19 in Korea. The results show that cost-optimal21

solutions for costs per infection ranging from 2,978 USD to 170K USD exhib-22

ited similar patterns. This highlights that once the cost per infection is specified,23

our approach generates the corresponding cost-optimal solution without addi-24

tional calculations. Our framework supports decision-making by accounting for25

the trade-off between policy and infection costs. It delivers rapid optimization26

and cost–benefit analysis results, enabling timely and informed decision-making27

during critical phases of a pandemic.28
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Introduction31

During the COVID-19 pandemic, governments faced a trade-off problem between min-32

imizing infections and the economic burden from non-pharmaceutical interventions,33

such as lockdowns and gathering restrictions [1]. Identifying an optimal strategy is34

challenging since multiple possible strategies may satisfy Pareto optimality accord-35

ing to health and economic costs [2–5]. Decision-makers face two central questions:36

(1) What is the best intervention strategy to minimize the costs of interventions and37

infections simultaneously? and (2) What are the reasonable costs of these interven-38

tions and infections? In this research, we answer these questions based on a research39

framework with an COVID-19 example.40

In recent decades, increasing air travel and the growing concentration of popula-41

tions in urban areas have accelerated the global spread of infectious diseases such as42

SARS, H1N1 influenza, MERS, and COVID-19 [6, 7]. Although traditional measures43

such as isolation, quarantine, and community containment were successfully imple-44

mented during the 2003 SARS outbreak [8], most countries were unable to control45

the spread of COVID-19 in 2020 using these standard measures [9]. These contrasting46

outcomes highlight the urgent need for more acceptable and cost-effective interven-47

tion strategies, particularly for emerging respiratory infectious diseases for which48

pharmaceutical interventions may not be immediately available [10].49

Researchers have studied mathematical modeling, parameter estimation, opti-50

mization, and cost-benefit analysis for infectious diseases. Compartmental models51

[11, 12], stochastic models [13–15], agent-based models [16–19], and network mod-52

els [20–22] are employed to capture the transmission dynamics of infectious diseases53
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and the interactions among individuals. Based on these modeling methods, optimiza-54

tion can identify the most effective non-pharmaceutical or pharmaceutical intervention55

strategy [23]. Optimal control theory has been utilized to determine time-varying non-56

pharmaceutical interventions (NPIs) that minimize a single objective, typically either57

disease burden or economic loss [24–27]. To minimize both infection and intervention58

costs simultaneously, multi-objective optimization is adopted, identifying Pareto-59

optimal strategies [28–32]. Note that single-objective optimization requires predefined60

weights or costs prior to the optimization process, whereas multi-objective optimiza-61

tion does not require such preset parameters in advance, thereby avoiding the need62

for extensive computational simulations repeatedly.63

Since modeling and optimization results are theoretical, they need to be evaluated64

against actual costs and presented to users in a more accessible format. Cost-benefit65

analysis quantifies the efficiency of modeling or optimization results in various inter-66

ventions during an epidemic of the disease. Paltiel et al. demonstrated that weekly67

testing is cost-effective under moderate transmission scenarios by comparing incremen-68

tal cost-effectiveness ratios (ICER) to societal willingness-to-pay thresholds [33, 34].69

Sandmann et al. evaluated the optimal timing of lockdowns that allowed for GDP70

losses of 2% to 15% per day [35], while Kohli et al. calculated ICER for vaccina-71

tion campaigns in terms of averted infections and quality-adjusted life years [36]. To72

bridge the gap between complex modeling and policy practice, recent work has pro-73

posed multi-objective results. For example, a study presents a web tool to explore74

trade-offs in influenza control, but few platforms allow real-time adjustments of both75

epidemiological and economic parameters for emerging pathogens [37, 38]. Although76

many studies have analyzed infectious disease epidemics using the individual tech-77

niques mentioned, we developed a novel framework that synthesizes all of these78

methods into a single workflow. Research that simultaneously addresses both multi-79

objective optimization and cost-benefit analysis remains rare. Moreover, there is no80
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previous study that has translated such results into an intuitive dashboard that non-81

specialists in mathematical modeling can immediately use. Our work, therefore, offers82

a new approach that swiftly delivers modeling, optimization, and economic evalua-83

tion insights to decision-makers in a familiar format during the urgent situation of an84

epidemic or pandemic.85

In this paper, we first introduce the research framework for general infectious dis-86

eases. Next, we present an application to the early phase of COVID-19 in Korea, which87

encompasses mathematical modeling, parameter estimation, multi-objective optimiza-88

tion, cost-benefit analysis, and the development of an interactive dashboard. Our89

contributions in this research are threefold. First, we propose a novel methodological90

approach that applies multi-objective optimization to address the inherent trade-offs91

in policy interventions, a strategy that can be generalized to other infectious dis-92

eases beyond COVID-19. Second, we reveal that there are only a few cost-optimal93

patterns of transmission reduction non-pharmaceutical intervention (NPI) strategies94

according to the infection cost. Third, the interactive dashboard offers an intuitive95

decision-support tool that streamlines the process of selecting and adapting optimal96

intervention policies, emphasizing the benefits of multi-objective optimization.97

Results98

To support decision-making in the early phase of infectious disease outbreaks, we99

developed a systematic research framework composed of five sequential processes, as100

illustrated by the orange diamonds in Figure 1. The framework begins with mathemat-101

ical modeling, where an appropriate infectious disease model is formulated to reflect102

the characteristics of the outbreak. This model defines the disease compartments (e.g.,103

susceptible, infected, recovered) and key parameters based on country-specific contexts104

and anticipated public health interventions. Next, parameter estimation is conducted105

to calibrate unknown parameters of the model using observed epidemiological data,106
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Fig. 1 Research framework for infectious diseases. Orange diamonds denote five steps of the
framework, green rectangles represent required inputs, blue rounded rectangles summarize outputs
with corresponding figures or tables.

such as case counts or hospitalization numbers. To enhance the robustness of this step,107

we performed sensitivity analysis and estimated the posterior distributions of param-108

eters using Bayesian inference, which allows the model to closely reproduce the actual109

epidemic or outbreak dynamics.110

In the third step, multi-objective optimization is applied to identify Pareto-optimal111

intervention strategies that balance competing objectives—minimizing both the cost112

of infection and the cost of intervention. These trade-offs are quantified by defining113

objective functions that rely on the relationship between model outputs (e.g., the114
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number of infections) and practical cost metrics. Notably, changes in the relationship115

between cost and output lead to different sets of Pareto-optimal and cost-optimal116

solutions, as demonstrated in Appendix ??. Following this, cost-benefit analysis is117

employed to determine the most cost-effective intervention strategies based on pre-118

defined cost-related parameters. These parameters include, for example, the value of119

a statistical life, GDP loss due to lockdowns, quarantine costs, and fatality rates.120

These factors directly influence the selection of optimal strategies and can be adapted121

to reflect economic and societal differences across regions. Finally, we developed a122

web-based interactive dashboard to enable end-users—such as policymakers and pub-123

lic health officials—to explore and select intervention strategies based on their own124

cost assumptions and constraints. The dashboard provides real-time visualization of125

cost-optimal outcomes under various parameter settings, thereby offering actionable126

insights tailored to the user’s local context.127

Throughout the framework, green boxes in Figure 1 indicate required inputs (e.g.,128

real-world problem description, observational data, cost parameters), while blue boxes129

represent the results generated at each step of the process. This integrated framework130

thus provides a flexible and data-driven approach for guiding intervention decisions131

during infectious disease outbreaks. The following results are an application of the132

framework to the early phase of the COVID-19 pandemic in Korea. The objectives133

are to identify the optimal transmission reduction strategy that minimizes the cost of134

intervention and infection prior to vaccine development and to provide a dashboard135

that allows users to control the cost-related parameters.136

Mathematical modeling137

Figure 2 illustrates the Susceptible(S)-Exposed(E)-Infectious(I)-Isolated(Q)-138

Recovered(R)-Death(D) (SEIQRD) model to investigate the early phase of COVID-19139

in Korea. There are five disease-related parameters (R0, κ, α, f , and γ): R0 is the140
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Fig. 2 Mathematical model for infectious diseases. The squares represent compartments of
the mathematical model and the black arrows represent flows to the compartments. The black dashed
arrow represents external importation which serves as a trigger for an epidemic. The red dashed arrow
represents the force of infection which drives the spread of the disease in a country. The parameters
in black and red are the disease-related and estimated parameters, respectively.

basic reproductive number of the disease, 1/κ is the average latent period, 1/α is the141

average infectious period, f is the case fatality rate, and 1/γ is the average isolation142

period. There are three policy-related parameters (µ(t), ξ, and τ): µ(t) represents143

the transmission reduction by NPIs, ξ is the average number of imported cases per144

day, and τ is the average infectious period reduction by NPIs. The details of the145

mathematical model are presented in the Methods section.146

Parameter estimation147

Table 1 presents the parameters of the mathematical model. The parameters R0, 1/κ,148

1/α, and 1/γ are epidemiological quantities that characterize the disease and whose149

values can be obtained from a proper reference. However, µ(t), ξ, and τ may vary150

across countries or change over time depending on policies or interventions imple-151

mented during a given period. Therefore, it is necessary to estimate these unknown152

parameters and we utilized a hybrid parameter estimation scheme using two global153
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optimizers to obtain a posterior distribution: the Improved Multi-operator Differen-154

tial Evolution (IMODE) and the Metropolis-Hastings (MH) algorithm [39], which is155

one of the Markov Chain Monte Carlo (MCMC) methods [40]. Table 1 shows the esti-156

mated values of the policy-related parameters obtained by fitting the model to the157

cumulative confirmed cases data. The average number of imported cases per day (ξ)158

is 0.2780, which is approximately 1 person per 4 days. The infectious period reduction159

(τ) is 62.18%, which means that contact tracing or testing policy reduces the infec-160

tious period by that value. The transmission reduction parameter, which has a value161

between 0 and 0.95, is estimated every two weeks since there were frequent changes162

in government transmission reduction policies. Note that µ is set to zero during the163

first two weeks, as confirmed cases were not yet detected. Appendix B presents the164

correlation between the estimated parameters derived from the MCMC chain.165

Table 1 Parameter table for the SEIQRD mathematical model. The symbols, definitions, and
values are presented in the table with corresponding references. µ(t), ξ, and τ are estimated from
the cumulative confirmed data.

Symbol Definition Value References

R0 Basic reproductive number 2.87 [41]
1/κ Average latent period 4 (day) [42]
1/α Average infectious period 10 (day) [43]
1/γ Average isolation period 14 (day) [44, 45]
f Case fatality ratio 0.0173 [46]

µ(t) Transmission reduction by NPIs over time [0∼0.95]* estimated
ξ Average imported cases per day 0.3243* (person/day) estimated
τ Average infectious period reduction by NPIs 0.5836* estimated

*: estimated parameter

Multi-objective optimization166

Multi-objective optimization simultaneously minimizes multiple objectives without167

assigning explicit weights to each one. It identifies Pareto-optimal solutions, where no168

objective can be improved without compromising at least one of the others. In this169

work, we employ NSGA-II [47], a multi-objective genetic algorithm, to find Pareto solu-170

tions that minimize both infection and intervention costs at the same time. Figure 3(a)171
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illustrates the objective space, where the average effectiveness of transmission reduc-172

tion and the number of infections are plotted on the x-axis and y-axis, respectively.173

Note that each axis represents an objective functional of the multi-objective opti-174

mization. Details of the multi-objective optimization are described in the Methods.175

The black curve indicates the Pareto-optimal solutions obtained from more than a176

thousand multi-objective optimization results. The colored circles represent Pareto177

solutions from Strategy 1 (S1) to Strategy 5 (S5), corresponding to scenarios infect-178

ing 10% to 0.001% of the population, respectively. The average transmission reduction179

from S1 to S5 are 32.13%, 36.60%, 40.71%, 47.99%, and 58.32%, respectively. The red180

diamond is estimated strategy (SE) have 53.05% of average transmission reduction181

and 0.0279% of infected population, which is not on the Pareto curve.182

Figure 3(b) shows the corresponding transmission reduction strategies of the183

selected points in (a). The red curve is the estimated strategy (SE) obtained from the184

data-fitting process. This curve corresponds to the red diamond in panel (a). Note185

that every point in the Pareto curve in (a) corresponds to a strategy as in panel186

(b). Strategies from S1 to S5 suggest strong intervention policies from 10th week to187

2nd week since the detection of index case, respectively. As the average transmission188

reduction increases, implementing strong policies earlier becomes more favorable. (SE189

enhanced the transmission reduction from 6th week and it is similar timing with S3.190

Strategy S5 suggests starting a strong policy in the 2nd week after detecting the index191

case. However, results show that maintaining a prolonged and stringent intervention192

without breaking is not recommended.193

Cost-benefit analysis194

Multi-objective optimization yields a set of Pareto-optimal solutions that simulta-

neously minimize intervention and infection costs, as illustrated in Figure 3(a,b).

However, because all Pareto solutions are optimal, no single solution can be deemed
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Fig. 3 Cost-benefit analysis results with Pareto solution. (a) Pareto curve and cost-optimal
solution. The black solid line, colored circle, and red diamond represent Pareto curve, selected Pareto
solution, and estimated point from data, respectively.(b) Corresponding solutions to the points in
the panel (a). (c) Total costs of Pareto curve under cost-benefit analysis. Orange area, green area,
and gray line represent infection cost, transmission reduction-related intervention cost, and total
cost, respectively. (d) Total costs of Pareto curve with different cost per infection. The green points
represent cost-optimal solutions with different cost per infection. The gray line corresponds to the
panel (c). (e) Cost-optimal solutions for cost per infection. The line parallel to the x-axis represents
the cost-optimal solution for the cost per infection and corresponds to the green points in the panel
(d). (f) Cost-optimal policy for each cost per infection range.

superior without additional criteria. To address this, we compute the monetary costs

of infection and intervention based on simulation results and the country’s GDP. The
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intervention cost for a strategy is computed as

Cint(µ(t)) = C1f1 (µ (t)) = C1

∫ tf
t0

µ(t)dt

tf − t0
,

where C1 is the maximum intervention cost in a day, f1(µ(t)) is the average reduction

in relative intervention cost under µ(t). The infection cost for a strategy is computed

as

Cinf(µ(t)) = C2f2(µ(t)) = C2

∫ tf

t0

µ(t)R0
α

1− τ
I(t)

S(t)

N(t)
dt,

where C2 is the cost per infection and f2(µ(t)) is the total infection from t0 to tf195

under µ(t). The total cost denotes the sum of the intervention cost and infection cost196

Ctot = Cint + Cinf. Details of the cost-benefit analysis are described in the Methods197

section.198

Since a single Pareto point corresponds to a single f1(µ(t)) value, the x-axis of199

Figure 3(c,d) corresponds to a Pareto solution. Figure 3(c) shows the cost-benefit200

analysis results where the cost per infection is set as 39213 USD and the maximum201

GDP reduction as 4.261%. The orange area represents the cost of infection, the green202

area represents the cost of transmission reduction intervention, and the gray curve203

represents the total cost of each strategy. The colored circles are Scenarios S1 to S5,204

and the red diamond is SE. The green square is the cost-optimal solution for the205

given cost per infection and intervention cost with an average transmission reduction206

value of 41.25% and total cost of 30.6B USD. The total costs for strategies S1 to207

S5, and SE are 223.6B, 45.8B, 30.7B, 34.0B, 41.1B, and 37.9B USD, respectively.208

The difference between the cost-optimal solution and SE is 7.3B USD and 11.79%209

in average transmission reduction. Note that if the government implements a weaker210

strategy than the cost-optimal solution, the total cost increases very rapidly.211
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Figure 3(d) presents the cost-optimal solution when the cost per infection is212

changed within the range [1K USD, 10M USD]. For example, if the government imple-213

ments f1(µ(t)) = 0.3 strategy and the cost per infection is 10K USD, the expected214

total cost is 124B USD, according to the heatmap. For each cost per infection, we215

emphasize the cost-optimal solution as green squares. The gray line is when the cost216

per infection is 39213 USD, which corresponds to Figure 3(c). If the cost per infection217

is 1K USD and 10M USD, the total cost of the cost-optimal solution is 25.6B USD and218

46.1B USD, respectively. The differences in total cost and average transmission reduc-219

tion between these two cases are 20.5B USD and 0.2356, respectively. If f1(µ(t)) = 0.3,220

the range of total cost is[32.0B USD, 108T USD]. Otherwise, if f1(µ(t)) = 0.5, the221

range of total cost is [35.2B USD, 63.9B USD].222

Among thousands of Pareto solutions, less than 100 solutions are cost-optimal223

solutions. Figure 3(e) represents the corresponding cost-optimal solutions according to224

cost per infection. This figure is an expansion of the green squares in Figure 3(d). The225

dark green color indicates a weak transmission reduction policy, while the light green226

color represents a strong transmission reduction policy. Several points of discontinuity227

can be observed in the cost-optimal solutions with respect to the cost per infection.228

The cost-optimal pattern (CoP) ranges from CoP1 to CoP3, which are cost-optimal229

within the intervals [1K,4.41K), [4.41K,361K), [361K,1.33M),and [1.33M,10M] USD,230

respectively. We note that the cost-optimal pattern for Korea follows CoP2, given that231

the cost per infection is 39.2K USD. 46.1192 38.9454 37.2855 28.0372 25.6182232

Table 2 presents the CoPs corresponding to different ranges of costs per infection.233

Solutions within each CoP share similar characteristics in terms of the transmission234

reduction strategy, specifically, the number of intervention periods, the duration of235

strong interventions, and the start and end time of interventions. This table may236

guide decision makers in selecting a cost-optimal strategy based on their evaluation of237

infection and intervention costs.238
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Table 2 Cost-optimal pattern (CoP) from the index case for cost per infection.

Cost per
Scenario

Strategy pattern (week) Total cost Total

infection (USD) Begin Increase Strong Decrease (USD) infection

1.33M – CoP4 0
0–1, 6–7, 2–3,8–9, 4–5,10–11, 38.96B – 0.00103% –

12–13,18–19 14–15,20–21 16–17,22–23 46.12 0.00338%

361K – 1.33M CoP3 2
2–3, 10–13, 4–7, 14–15, 8–9, 16–17 38.96B – 0.00338% –

18–19 20–21 22–23 37.29B 0.00678%

4.41K – 361K CoP2 4 4–5, 14–15 6–9, 16–17 10–11, 18–21
28.04B – 0.00678% –
37.29B 0.467%

– 4.41K CoP1 6 6-7 8–15 16–17
25.62B – 0.467% –
28.04B 2.62%

User-interactive dashboard239

Since intervention and infection costs are not only difficult to estimate but also vary240

widely across settings and individuals, we developed an interactive dashboard using241

Python Shiny that allows users to adjust cost-related parameters, including GDP,242

GDP reduction, value of a statistical life (VSL), and the fatality rate. Figure 4, a243

snapshot of our dashboard, shows the cost-related parameters that users can adjust244

accordingly. By default, the dashboard is initialized with characteristics of COVID-245

19 and estimated parameters derived from data of the Republic of Korea. Beneath246

the parameter adjustment panel, there are model simulation results based on the247

demography-related, disease-related, and policy-related parameters.248

The results in the right panel are similar to the results in Figure 3. The primary249

difference between the results displayed in the dashboard and those reported in this250

paper is that the cost-optimal results can be changed by adjusting the cost-related251

parameters, the quarantine period, and the fatality rate. When users adjust these252

parameters, the cost-optimal results are updated immediately: the cost-optimal solu-253

tion is indicated by a green circle, the cost-optimal strategy is represented by a green254

line, the cost per infection is depicted by a gray dotted line, and the cost-optimal255

pattern is marked by a non-blurred line. Finally, our dashboard enables policymakers256
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summary of the cost-benefit analysis.

to evaluate the cost-optimal solution based on their perspective immediately and to257

contextualize their plans by suggesting other possible cost-optimal options.258

Discussion259

The results presented offer retrospective insights into the COVID-19 pandemic in260

Korea. However, because the data are only used to estimate unknown parameters of an261

infectious disease model, the framework can be readily adapted for prospective appli-262

cations to support scientifically informed decision-making in future infectious disease263
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outbreaks, particularly in identifying cost-optimal intervention strategies. To apply the264

framework to an emerging or unknown infectious disease, one needs to make informed265

assumptions about the disease’s epidemiological characteristics, the country-specific266

responses, and the functional relationship between model outputs and associated eco-267

nomic costs. Based on these assumptions, the framework can simulate the introduction268

of the disease into a population via importation and identify Pareto-optimal and cost-269

optimal intervention strategies. To obtain results for different infectious diseases, users270

can modify the disease-related parameter using values from existing literature [48–50],271

and then apply our framework. Similarly, to adapt the analysis to different countries,272

users can adjust the population and policy-related parameters based on the data.273

Since the policy-related parameters that capture the effects of interventions are esti-274

mated using a specific country’s data, cost-optimal solutions for other countries can275

be similarly derived using their country’s respective data.276

While the research framework makes it possible for policymakers to find a cost-277

optimal solution under their cost-related parameter setting, the results derived from278

this framework suggest that the relationship between the transmission reduction and279

economic cost determines the cost-optimal intervention strategy. If the relationship is280

linear as we have assumed in the main text, the cost-optimal solutions are on-off type,281

indicating that the lockdown policy is more cost-effective than other strategies. This282

supports the intervention strategy implemented in most countries. However, if mask-283

wearing intervention is cheap and effective, and strong intervention is expensive and284

ineffective, the early and constant intervention is more effective than other strategies.285

This means that wearing masks and personal hygiene policies are more cost-effective286

than the lockdown policy. Therefore, research on intervention cost is crucial as it287

significantly influences the cost-optimal strategy to implement during an epidemic.288
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In this research, we only considered controlling transmission-related interventions289

to obtain a Pareto optimal solution. However, optimal strategies on quarantine and290

testing are also important to assess during a pandemic [44, 45].291

Although our proposed framework provides a way to analyze cost-free and cost-292

optimal intervention strategies, there are limitations to its practical implementation.293

First, we adopted the established SEIQR model, which allows for rapid experimenta-294

tion and generation of results. While the framework emphasizes structural design, it295

remains flexible. Users can readily incorporate more complex models [51], without the296

need for algebraic derivations, due to the implementation of the metaheuristic algo-297

rithm [39, 47]. Second, if users wish to change the model, the objective functions, or298

certain parameters, they can obtain different Pareto solutions. Appendix ?? suggests299

that we can observe a similar cost-optimal pattern under different simulation settings.300

Additionally, as long as users calculate the Pareto solutions, they can only change301

the cost-related parameters to obtain a user-defined cost-optimal solution. Third, the302

theoretical solution does not provide specific policies to achieve the suggested trans-303

mission reduction value. Policymakers should refer to other papers on the relationship304

between transmission reduction and specific policies [52–54]. Lastly, we considered305

only the cost of infection without accounting for medical resources or potential over-306

burdening, and detailed costs of other interventions such as limitations in gathering,307

quarantine, testing, and other interventions. Nevertheless, the user can modify the cost308

of intervention or infection to account for additional intervention or infection costs by309

adjusting these costs to obtain corresponding cost-optimal solutions.310

We formulate the mathematical model considering the importation of infected peo-311

ple from abroad, transmission reduction, and infectious period reduction, which are312

related to intervention policies during the early phase of a pandemic. Since the effect313

of interventions is not known, these parameters are estimated using the parameter314

estimation method, utilizing the hybrid method of a machine learning-based global315
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optimization (IMODE) and the statistical optimization method (MCMC). Using the316

mathematical model with estimated parameters, multi-objective optimization obtains317

Pareto solutions of the transmission reduction policy that simultaneously minimizes318

the cost of intervention and the cost of infection. Thereafter, cost-benefit analysis319

determines the cost-optimal solution among the Pareto solutions for a cost per infec-320

tion; e.g., the higher the cost per infection, the stronger the cost-optimal intervention.321

Since the cost-optimal solution is changed by the cost of interventions or infection,322

we build a web-based dashboard that enables customizing the cost and obtaining the323

corresponding cost-optimal strategy. This research framework can be applied to other324

respiratory infectious diseases at the beginning of a pandemic.325

Methods326

Mathematical Modeling327

To describe the transmission dynamics of the early phase of the COVID-19 pandemic328

in Korea, we propose an extended SEIQRD compartmental model. The population329

is divided into six epidemiological compartments: Susceptible individuals (S) have no330

immunity and have not yet been exposed to the disease. Latent or exposed individuals331

(E) have been exposed to the disease but are not yet infectious. Infectious individuals332

(I) have become infectious and can transmit the disease to susceptible individuals.333

Isolated individuals (Q) have been identified and isolated due to self-reporting or334

contact tracing. Recovered individuals (R) have recovered from the disease and are335

assumed to be immune. Deceased individuals (D) have died from the disease.336

The governing equations (1–6) represent the changes in each compartment.337

dS

dt
= −λ(t)S, (1)

dE

dt
= λ(t)S − κE + ξ, (2)
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dI

dt
= κE − α

1− τ
I, (3)

dQ

dt
=

α

1− τ
I − γQ, (4)

dR

dt
= (1− f)γQ, (5)

dD

dt
= fγQ, (6)

where λ(t) = (1−µ(t))R0
α

1−τ I/N is the force of infection,R0 is the basic reproduction338

number, 1/α is the average infectious period, τ is the infectious period reduction due to339

testing or contact tracing policies, µ(t) is the time-dependent transmission reduction340

resulting from policy interventions, andN = S+E+I+R. The parameter µ(t) consists341

of a set of values µi, each representing the level of transmission reduction during a342

specific period. The index i corresponds to the period starting on day 14× (i−1) from343

the beginning of the simulation, with each period spanning two weeks. The details344

on µ(t) are described in Appendix A. The paremeter ξ is the average daily imported345

cases to the country; 1/κ is the mean latent period, that is, the average time to be346

infectious from the infection; 1/γ is the average removal period, that is, the average347

time to recover or die from the disease since isolation; and f is the fatality rate, that348

is, the probability of death among infected cases. Note that the infectious period does349

not begin with the onset of symptoms, but rather with the start of infectiousness. For350

example, patients infected by COVID-19 can be infectious two days before symptoms351

appear [55]. Figure 2 represents the flowchart of the model.352

Data-fitting Process353

We utilize two global optimizers—Improved Multi-operator Differential Evolution354

(IMODE) and Markov Chain Monte Carlo (MCMC)—to estimate the parameters355

[39, 40, 56]. IMODE achieved first place in the Congress on Evolutionary Computa-356

tion (CEC) 2020 competition on bounded single-objective optimization algorithms.357
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It combines the advantages of global and local search, focusing on exploration at the358

beginning and exploitation at the end of the optimization process. IMODE excels359

at finding optimal solutions for given function evaluations within a specified domain360

without a preset initial point. We employ IMODE to minimize the difference between361

model simulation results and the cumulative confirmed cases data (Cdata).362

min
θ

∫ tend

t0

∥∥∥∥ α

1− τ
I(t; θ)− Cdata

∥∥∥∥
2

dt (7)

where θ ∈ {ξ, τ, µ(t)} are the policy-related parameters.363

Sensitivity analysis364

The sensitivity analysis results show the relative impact of each parameter on the365

model outputs. It can provide information on which parameter may effectively control366

the outputs or which parameter can be ignored. We performed Partial Rank Coefficient367

Correlation (PRCC) analysis on the number of infected cases and confirmed cases to368

assess the sensitivity of the paremeters to these model outputs. Note that the confirmed369

cases are an output for the parameter estimation and the infected cases are an output370

for the multi-objective optimization. µ and τ are the most sensitive parameters for both371

outputs among the policy-related parameters, where those parameters affect disease-372

related parameters β and α. The PRCC results are presented in the Appendix C.373

Multi-objective optimization374

We assume that interventions affecting the infectious period and the number of375

imported cases during an epidemic remain fixed, as these are largely determined by376

a country’s health or medical system. In the multi-objective optimization, we focus377

solely on changes in the transmission reduction parameter µ(t), which is influenced378

by government policies such as mask-wearing, social distancing, and gathering restric-379

tions. The goals of the optimization are to simultaneously minimize both infection380
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levels and the costs associated with transmission-related interventions by adjusting381

µ(t). Since µ(t) represents time-dependent transmission reduction and the expression382 ∫ tf
t0

µ(t)R0α(1 − τ)I(t) S(t)
N(t)dt reflects the total number of infections over the simula-383

tion period, the two objectives correspond to intervention stringency and epidemic384

size, respectively. However, directly quantifying the relationship between µ(t) and the385

cost of the intervention is difficult. To address this, we assume that the cost of inter-386

vention is proportional to both its effectiveness and stringency. Similarly, the cost of387

infection is assumed to be proportional to the total number of infections. Hence, we388

minimize the functions f1(µ(t)) and f2(µ(t)) represented by389

argmin
µ(t)

f1 (µ (t))

f2(µ(t))

 = argmin
µ(t)


∫ tf
t0

µ(t)dt

tf−t0∫ tf
t0

µ(t)R0αI(t)
S(t)
N(t)dt

 . (8)

Note that f1 and f2 are proportional to the monetary cost but do not exactly equal390

the cost. The multi-objective optimization problem simultaneously minimizes f1 and391

f2 where the governing equations are given by equation ((1)–(6)).392

The multi-objective optimization will find solutions near the Pareto curve, that is, a393

set of Pareto solutions in the objective plane composed of the codomain of f1 and f2. A394

solution is considered Pareto-optimal if it is not dominated by any other solution; that395

is, no other solution performs better in at least one objective without performing worse396

in at least one other objective. We obtained the Pareto curve using the built-in function397

multiobjga that employs the non-dominated sorting genetic algorithm II (NSGA-II)398

in MATLAB [47]. To get an accurate solution, we independently run multiobjga one399

thousand times and assembled the Pareto solution by finding the Pareto front.400

Cost-Benefit Analysis401

Since the Pareto solutions are outputs and not costs, we introduce C1 as the maximum402

intervention cost in a day and C2 as the cost per infection, to convert the outputs into403
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monetary costs. We consider C1 to be proportional to two factors: the GDP per capita404

of the country and the reduction of the GDP by intervention. The GDP of the Republic405

of Korea in 2019 is 31902, and the maximum reduction is assumed to be 4.26% based406

on the difference between the GDP projection by OECD in 2019 and the real GDP407

data [57, 58]. C2 is divided into the average hospitalization cost and expected cost of408

death [34–36, 59, 60]. The following are the formulas used for C1 and C2:409

C1 = GDP×GDPMaxRed (9)

C2 = CH + f ×VSL, (10)

where GDP is total GDP of the country, GDPMaxRed is the maximum GDP reduction410

by transmission reduction intervention, CH is the average hospitalization cost per411

infection, f is case fatality rate, and VSL is the value of statistical life. Details of the412

cost-benefit analysis are described in the Appendix.413

Dashboard414

The parameters in equations C1 and C2 are difficult to specify as single fixed values.415

For example, VSL can change according to average age, wage, income elasticities, and416

ethical considerations [61–65]. To address this variability, we developed a dashboard417

that enables users to select their own cost-related parameters and obtain cost-optimal418

results within seconds. We built the web dashboard using the Shiny package in Python419

and included both a mathematical model simulator and a cost-optimal intervention420

policy simulator. In the mathematical model simulator, users can change various421

parameters of the SEIQRD model and check the simulation results immediately. In the422

cost-optimal intervention policy simulator, users can adjust the five economic-related423
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parameters, which are inputs to the costs C1 and C2. This real-time optimization sim-424

ulator is possible because the multi-objective optimization does not require a weight425

parameter for each objective.426
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Appendix A Transmission reduction µ(t)449

The time-dependent transmission reduction function µ(t) is defined using linear450

interpolation of µi, that is, the transmission reduction at time t = i× 14:451

µ(t) = µn+1 −
(
n− t

14

)
(µn+1 − µn) , (A1)

where n = ⌈ t
14⌉ and µ0 = 0. Note that we assume transmission reduction changes every452

two weeks, in accordance with government announcements regarding adjustments in453

intervention strategies. We also assume that testing and controlling of imported cases454

are implemented by the government. The parameter ξ represents the mean daily455

imported cases per day. The imported cases are affected by the screening system in the456

airports or borders. We assume that there are no infected cases at the beginning of the457

simulation since the spread of infectious diseases are triggered by imported cases. The458

parameter τ represents the infectious period reduction that is affected by the testing459

or tracing system of the government. We estimated these policy-related parameters460

from the confirmed cases data.461

Appendix B Hybrid parameter estimation462

To reduce computational time and find a more accurate solution, we utilized two463

algorithms – the global optimization algorithm named improved multi-operator dif-464

ferential evolution (IMODE) and the Markov-chain Monte Carlo (MCMC) method.465

In our simulations, we used the cumulative confirmed cases data and minimized the466

L2-norm between the data and the corresponding output from the simulation results.467

We estimated the policy-related parameters ξ, τ , µ3, µ4, · · · as described in the main468

text. IMODE finds the optimal solution faster and the MCMC provides the solution469

with posterior information.470
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B.1 Improved multi-operator differential evolution471
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Fig. B1 IMODE estimation results. (A) shows the cumulative confirmed cases and simulation
results. (B) shows the 25 estimation results with boxchart and the best estimation results with red
circle point. (C) shows the L2-norm of 25 estimation results.

If a local optimizer is used, user-specified initial values must often be taken into472

account, since the solution may be sensitive to the starting point. The use of a global473

optimizer eliminates this problem since it does not require an initial value for the474

optimization. To reduce the randomness of the global optimizer, we run IMODE475

twenty-five times and select the best solution among them [39]. Each simulation termi-476

nates after 100,000 function evaluations. Figure B1 shows the estimation results. Since477

the IMODE algorithm can search for the most suitable solution in the loss landscape,478

we used the IMODE results as prior information in the MCMC process.479

B.2 MCMC process480

We use the MATLAB package to run the Markov-chain Monte-Carlo (MCMC) algo-481

rithm [40, 56]. This package requires the parameter list, prior distribution of the482
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Fig. B2 MCMC estimation results. (A) shows the cumulative confirmed cases and simulation
results. (B) show the estimated µ(t). (C) shows the daily confirmed cases and simulation results.

parameters, the equations of the system, and the objective function of the MCMC483

process. The package uses the delayed-rejection adaptive metropolis (DRAM) algo-484

rithm [56] to search for the posterior distribution. We set the prior distribution as a485

normal distribution that has a mean value from the IMODE results and a standard486

deviation of 0.05. Figure B2 shows the parameter estimation results.487

Figure B3 presents the MCMC chains obtained from the DRAM algorithm. The488

total length of the chain is 1 million, where the burn-in period is half of the total chain489

length. The red lines indicate the burn-in period, and the rest of the chain composes490

the posterior distribution.491

Figure B4 presents the correlation between the estimated parameters derived from492

the MCMC chain. Many of the elements have correlation values lower than 0.5 except493

for the diagonal part. The lower correlation values indicate the practical identifiability494

of the estimated parameters.495
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Fig. B3 MCMC chain for the estimated parameters. The red period indicate the burn-in
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Appendix C Sensitivity analysis results496

Sensitivity analysis presents how impactful the parameters are on the simulation497

results. We set µ as constant in this sensitivity analysis simulation. We check the sen-498

sitivity for two outputs – cumulative confirmed cases and the number of infections.499

The cumulative cases are used for the data-fitting process and the number of infections500

is used for the multi-objective optimization. Figure C5 presents the PRCC results for501

two outputs. The β has the highest correlation and is larger than 0.8 for all time. κ and502

ξ have 0.6723 and 0.6203 at the beginning of the simulation but they monotonically503

reduce to 0.2432 and 0.0837, respectively. τ is 0.5 at the beginning of the simulation504

but the correlation keeps increasing up to 0.8.505
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